Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
J Virol ; 98(3): e0185123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353537

RESUMO

Recently, we identified the coxsackie and adenovirus receptor (CAR) as the entry receptor for rhesus enteric calicivirus (ReCV) isolate FT285 and demonstrated that co-expression of the CAR and the type B histo-blood group antigen (HBGA) is required to convert the resistant CHO cell line susceptible to infection. To address whether the CAR is also the functional entry receptor for other ReCV isolates and the requirement for specific HBGAs or other glycans, here we used a panel of recombinant CHO cell lines expressing the CAR and the type A, B, or H HBGAs alone or in combination. Infection studies with three diverse ReCV strains, the prototype GI.1 Tulane virus (TV), GI.2 ReCV-FT285, and GI.3 ReCV-FT7, identified that cell surface expression of the CAR is an absolute requirement for all three strains to promote susceptibility to infection, while the requirement for HBGAs varies among the strains. In addition to the CAR, ReCV-FT285 and TV require type A or B HBGAs for infection. In the absence of HBGAs, TV, but not Re-CV FT285, can also utilize sialic acids, while ReCV-FT7 infection is HBGA-independent and relies on CAR and sialic acid expression. In summary, we demonstrated strain-specific diversity of susceptibility requirements for ReCV infections and that CAR, type A and B HBGA, and sialic acid expression control susceptibility to infection with the three ReCV isolates studied. Our study also indicates that the correlation between in vitro HBGA binding and HBGAs required for infection is relatively high, but not absolute. This has direct implications for human noroviruses.IMPORTANCEHuman noroviruses (HuNoVs) are important enteric pathogens. The lack of a robust HuNoV cell culture system is a bottleneck for HuNoV cell culture-based studies. Often, cell culture-adapted caliciviruses that rapidly replicate in conventional cell lines and recapitulate biological features of HuNoVs are utilized as surrogates. Particularly, rhesus enteric caliciviruses (ReCVs) display remarkable similarities, including the primate host, clinical manifestation of gastroenteritis, genetic/antigenic diversity, and reliance on histo-blood group antigens (HBGAs) for attachment. While the HuNoV entry receptor(s) is unknown, the coxsackie and adenovirus receptor (CAR) has recently been identified as the ReCV entry receptor. Here, we identified the CAR, the type A and B HBGAs, and sialic acids as critical cell surface molecules controlling susceptibility to ReCV infections. The CAR is required for all ReCV isolates studied. However, the requirement for the different carbohydrate molecules varies among different ReCV strains. Our findings have direct implications for HuNoVs.


Assuntos
Infecções por Caliciviridae , Caliciviridae , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Animais , Cricetinae , Humanos , Antígenos de Grupos Sanguíneos/metabolismo , Caliciviridae/fisiologia , Infecções por Caliciviridae/virologia , Células CHO , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Intestino Delgado/virologia , Ácido N-Acetilneuramínico/metabolismo , Norovirus/fisiologia
2.
Gastroenterology ; 166(1): 103-116.e9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37716376

RESUMO

BACKGROUND & AIMS: CXADR-like membrane protein (CLMP) is structurally related to coxsackie and adenovirus receptor. Pathogenic variants in CLMP gene have been associated with congenital short bowel syndrome, implying a role for CLMP in intestinal development. However, the contribution of CLMP to regulating gut development and homeostasis is unknown. METHODS: In this study, we investigated CLMP function in the colonic epithelium using complementary in vivo and in vitro approaches, including mice with inducible intestinal epithelial cell (IEC)-specific deletion of CLMP (ClmpΔIEC), intestinal organoids, IECs with overexpression, or loss of CLMP and RNA sequencing data from individuals with colorectal cancer. RESULTS: Loss of CLMP enhanced IEC proliferation and, conversely, CLMP overexpression reduced proliferation. Xenograft experiments revealed increased tumor growth in mice implanted with CLMP-deficient colonic tumor cells, and poor engraftment was observed with CLMP-overexpressing cells. ClmpΔIEC mice showed exacerbated tumor burden in an azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis model, and CLMP expression was reduced in human colorectal cancer samples. Mechanistic studies revealed that CLMP-dependent regulation of IEC proliferation is linked to signaling through mTOR-Akt-ß-catenin pathways. CONCLUSIONS: These results reveal novel insights into CLMP function in the colonic epithelium, highlighting an important role in regulating IEC proliferation, suggesting tumor suppressive function in colon cancer.


Assuntos
Colite , Neoplasias do Colo , Animais , Humanos , Camundongos , Proliferação de Células , Colite/induzido quimicamente , Colite/metabolismo , Neoplasias do Colo/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Células Epiteliais/patologia , Mucosa Intestinal/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Dev Cell ; 58(23): 2684-2699.e6, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37944525

RESUMO

CAR-like membrane protein (CLMP) is a tight junction-associated protein whose mutation is associated with congenital short bowel syndrome (CSBS), but its functions in colorectal cancer (CRC) remain unknown. Here, we demonstrate that CLMP is rarely mutated but significantly decreased in CRC patients, and its deficiency accelerates CRC tumorigenesis, growth, and resistance to all-trans retinoic acid (ATRA). Mechanistically, CLMP recruits ß-catenin to cell membrane, independent of cadherin proteins. CLMP-mediated ß-catenin translocation inactivates Wnt(Wingless and INT-1)/ß-catenin signaling, thereby suppressing CRC tumorigenesis and growth in ApcMin/+, azoxymethane/dextran sodium sulfate (AOM/DSS), and orthotopic CRC mouse models. As a direct target of Wnt/ß-catenin, cytochrome P450 hydroxylase A1 (CYP26A1)-an enzyme that degrades ATRA to a less bioactive retinoid-is upregulated by CLMP deficiency, resulting in ATRA-resistant CRC that can be reversed by administering CYP26A1 inhibitor. Collectively, our data identify the anti-CRC role of CLMP and suggest that CYP26A1 inhibitor enable to boost ATRA's therapeutic efficiency.


Assuntos
Neoplasias Colorretais , beta Catenina , Camundongos , Animais , Humanos , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , beta Catenina/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Transformação Celular Neoplásica , Carcinogênese , Neoplasias Colorretais/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral
4.
Microb Pathog ; 184: 106383, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806501

RESUMO

The relative overexpression of Coxsackie and adenoviral receptor (CAR) predisposes children to viral myocarditis. As the foot and mouth disease virus (FMDV) causes fatal myocarditis in calves, lambs, and piglets and belongs to the same family as the Coxsackie virus, we investigated the role of CAR in FMDV induced myocarditis in the suckling mice model. Swiss albino suckling mice of 5 days (n = 24) were divided into two equal groups. One group was inoculated with suckling mice adapted FMDV serotype O at 10 LD50, while the other group served as uninfected control. In addition, adult mice (n = 12) served as the control for age related CAR expression and lack of pathogenicity to FMDV. The establishment of myocarditis was confirmed by histopathological changes typical of myocarditis along with immunolocalization of FMDV antigens in the heart of suckling mice. The FMDV inoculated suckling mice group showed a significant upregulation of CAR transcripts by 2.5 folds, overexpression of CAR protein by densitometric analysis of immunoblots, and intense immunolocalization of CAR in the sarcolemma and intercalated discs of cardiomyocytes as compared to the uninfected suckling mice group and adult mice. It was concluded that FMDV infection induced overexpression of CAR in the myocardium of suckling mice.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Miocardite , Criança , Animais , Camundongos , Ovinos , Bovinos , Humanos , Suínos , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Miocárdio
5.
Biochem Soc Trans ; 51(3): 1143-1155, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37306404

RESUMO

Coxsackievirus and adenovirus receptor (CAR) is a transmembrane cell-cell adhesion receptor that forms homodimers across junctions and plays a key role in mediating epithelial barrier integrity. CAR can also heterodimerise with receptors on the surface of leukocytes and thus plays an additional role in mediating immune cell transmigration across epithelial tissues. Given the importance of both biological processes in cancer, CAR is emerging as a potential mediator of tumorigenesis as well as a target on cancer cells for viral therapy delivery. However, the emerging, often conflicting, evidence suggests that CAR function is tightly regulated and that contributions to disease progression are likely to be context specific. Here, we summarise reported roles for CAR in the context of cancer and draw on observations in other disease settings to offer a perspective on the potential relevance of this receptor as a therapeutic target for solid tumours.


Assuntos
Carcinogênese , Receptores Virais , Humanos , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Receptores Virais/fisiologia , Adesão Celular/fisiologia , Transformação Celular Neoplásica
6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982793

RESUMO

The immunoglobulin-like cell adhesion molecule CLMP is a member of the CAR family of cell adhesion proteins and is implicated in human congenital short-bowel syndrome (CSBS). CSBS is a rare but very severe disease for which no cure is currently available. In this review, we compare data from human CSBS patients and a mouse knockout model. These data indicate that CSBS is characterized by a defect in intestinal elongation during embryonic development and impaired peristalsis. The latter is driven by uncoordinated calcium signaling via gap junctions, which is linked to a reduction in connexin43 and 45 levels in the circumferential smooth muscle layer of the intestine. Furthermore, we discuss how mutations in the CLMP gene affect other organs and tissues, including the ureter. Here, the absence of CLMP produces a severe bilateral hydronephrosis-also caused by a reduced level of connexin43 and associated uncoordinated calcium signaling via gap junctions.


Assuntos
Conexina 43 , Pseudo-Obstrução Intestinal , Animais , Camundongos , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Adesão Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Moléculas de Adesão Celular/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36241608

RESUMO

BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), peripheral immune cells use various cell trafficking molecules to infiltrate the CNS where they cause damage.The objective of this study was to investigate the involvement of coxsackie and adenovirus receptor-like membrane protein (CLMP) in the migration of immune cells into the CNS of patients with MS. METHODS: Expression of CLMP was measured in primary cultures of human brain endothelial cells (HBECs) and human meningeal endothelial cells (HMECs), postmortem brain samples, and peripheral blood mononuclear cells (PBMCs) from patients with MS and controls by RNA sequencing, quantitative PCR, immunohistochemistry, and flow cytometry. In vitro migration assays using HBECs and HMECs were performed to evaluate the function of CLMP. RESULTS: Using bulk RNA sequencing of primary cultures of human brain and meningeal endothelial cells (ECs), we have identified CLMP as a new potential cell trafficking molecule upregulated in inflammatory conditions. We first confirmed the upregulation of CLMP at the protein level on TNFα-activated and IFNγ-activated primary cultures of human brain and meningeal ECs. In autopsy brain specimens from patients with MS, we demonstrated an overexpression of endothelial CLMP in active MS lesions when compared with normal control brain tissue. Flow cytometry of human PBMCs demonstrated an increased frequency of CLMP+ B lymphocytes and monocytes in patients with MS, when compared with that in healthy controls. The use of a blocking antibody against CLMP reduced the migration of immune cells across the human brain and meningeal ECs in vitro. Finally, we found CLMP+ immune cell infiltrates in the perivascular area of parenchymal lesions and in the meninges of patients with MS. DISCUSSION: Collectively, our data demonstrate that CLMP is an adhesion molecule used by immune cells to access the CNS during neuroinflammatory disorders such as MS. CLMP could represent a target for a new treatment of neuroinflammatory conditions.


Assuntos
Esclerose Múltipla , Humanos , Encéfalo/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Células Endoteliais/metabolismo , Leucócitos/metabolismo , Leucócitos Mononucleares , Fator de Necrose Tumoral alfa/metabolismo
8.
Cardiovasc Pathol ; 60: 107452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35850451

RESUMO

BACKGROUND: Coxsackie Virus and Adenovirus Receptor (CXADR or CAR) is involved in the pathogenesis of inflammatory dilated cardiomyopathy (DCM). We aimed to examine the relationship of CAR expression on platelets and cardiomyocytes with virus persistence, local and systemic inflammation and platelet activity in patients with DCM. METHODS: Endomyocardial biopsy (EMB) samples of 38 patients (mean age 39.5±11.3 years, 20 male) with DCM were analyzed for CAR expression, local inflammation grade by immunohistochemistry and virus persistence by real-time PCR. Platelet morphology was analyzed in all patients and 30 healthy subjects (HS) using scanning electron microscopy, platelet activity by light transmission aggregation, and CAR persistence by immunofluorescence. Platelets of 20 patients were analyzed for cytomegalovirus and herpes simplex virus 1-2 by immunofluorescence. Serum levels of tumor necrosis factor alpha (TNF α) and Interleukin-6 were assessed using ELISA in all studied subjects. RESULTS: CAR expression in EMB samples was related to the heart failure functional class and the level of IL-6. Platelets from DCM patients showed enhanced spontaneous and ADP induced aggregation. Platelets' CAR expression was >4 fold higher in DCM than HS and was observed predominantly at sites of intercellular communications in microaggregates and leukocyte-platelet aggregates. CAR-positive patients showed significantly higher TNF-α and IL-6 serum levels in CAR-negative patients. Platelets of 6 (30%) DCM patients revealed the mature cytomegalovirus and herpes simplex viruses particles. CONCLUSION: Tight junction protein CAR may serve as a docking pin creating a new type of contact structure that could be responsible for signaling between neighboring cells in pathological conditions.


Assuntos
Cardiomiopatia Dilatada , Infecções por Coxsackievirus , Miocardite , Difosfato de Adenosina , Adenoviridae , Adulto , Plaquetas/patologia , Cardiomiopatia Dilatada/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Feminino , Humanos , Inflamação , Interleucina-6 , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Receptores Virais , Fator de Necrose Tumoral alfa
9.
Mol Biol Rep ; 49(4): 3213-3223, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35122600

RESUMO

BACKGROUND: During viral-induced myocarditis, immune cells migrate towards the site of infection and secrete proteases, which in turn can act as sheddases by cleaving extracellular domains of transmembrane proteins. We were interested in the shedding of the Coxsackie- and adenovirus receptor (CAR) that acts as an entry receptor for both eponymous viruses, which cause myocarditis. CAR shedding by secreted immune proteases could result in a favourable outcome of myocarditis as CAR's extracellular domain would be removed from the cardiomyocytes' surface leading to decreased susceptibility to ongoing viral infections. METHODS AND RESULTS: In this work, matrix metalloproteinases and serine proteinases were screened for their proteolytic activity towards human CAR. Whereas matrix metalloproteinases, proteinase 3, and cathepsin G did not cleave human recombinant CAR or only within long incubation times, neutrophil elastase showed a distinct cleavage pattern of CAR's extracellular domain that was time- and dose-dependent. Neutrophil elastase cleaves CAR at its membrane-proximal immunoglobulin domain as we determined by nanoLC-MS/MS. Furthermore, neutrophil elastase treatment of cells reduced CAR surface levels as seen by flow cytometry and immunofluorescence microscopy. CONCLUSIONS: With this study, we show that CAR might be a target for shedding by neutrophil elastase.


Assuntos
Elastase de Leucócito , Espectrometria de Massas em Tandem , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Humanos , Receptores Virais
10.
J Virol ; 96(3): e0082621, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787457

RESUMO

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Assuntos
Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/fisiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Interações Hospedeiro-Patógeno , Proteína Cofatora de Membrana/metabolismo , Adenovírus Humanos/ultraestrutura , Animais , Biomarcadores , Contagem de Células Sanguíneas , Células CHO , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/química , Cricetulus , Modelos Animais de Doenças , Expressão Gênica , Humanos , Proteína Cofatora de Membrana/química , Proteína Cofatora de Membrana/genética , Camundongos Transgênicos , Modelos Biológicos , Modelos Moleculares , Mutagênese , Ligação Proteica , Conformação Proteica , Sorogrupo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Relação Estrutura-Atividade
11.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831034

RESUMO

Oncolytic adenoviruses (oAds) have been evaluated in numerous clinical trials due to their promising attributes as cancer therapeutics. However, the therapeutic efficacy of oAds was limited due to variable coxsackie and adenovirus receptor (CAR) expression levels and the dense extracellular matrix (ECM) of heterogenic clinical tumors. To overcome these limitations, our present report investigated the therapeutic efficacy of combining GM101, an oAd with excellent tumor ECM degrading properties, and histone deacetylase inhibitor (HDACi). Four different HDACi (suberohydroxamic acid (SBHA), MS-275, trichostatin A (TSA), and valproic acid) candidates in combination with replication-incompetent and GFP-expressing Ad (dAd/GFP) revealed that SBHA and MS-275 exerted more potent enhancement in Ad transduction efficacy than TSA or valproic acid. Further characterization revealed that SBHA and MS-275 effectively upregulated CAR expression in cancer cells, improved the binding of Ad with cancer cell membranes, and led to dynamin 2- and clathrin-mediated endocytosis of Ad. The combination of GM101 with HDACi induced superior cancer cell killing effects compared to any of the monotherapies, without any additional cytotoxicity in normal cell lines. Further, GM101+SBHA and GM101+MS-275 induced more potent antitumor efficacy than any monotherapy in U343 xenograft tumor model. Potent antitumor efficacy was achieved via the combination of GM101 with HDACi, inducing necrotic and apoptotic cancer cell death, inhibiting cancer cell proliferation, degrading ECM in tumor tissue, and thus exerting the highest level of virus dispersion and accumulation. Collectively, these data demonstrate that the combination of GM101 and HDACi can enhance intratumoral dispersion and accumulation of oAd through multifaced mechanisms, making it a promising strategy to address the challenges toward successful clinical development of oAd.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Microambiente Tumoral , Adenoviridae/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Clatrina/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Dinamina II/metabolismo , Endocitose/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos Nus , Neoplasias/patologia , Transgenes , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34427588

RESUMO

T cells are critical mediators of antitumor immunity and a major target for cancer immunotherapy. Antibody blockade of inhibitory receptors such as PD-1 can partially restore the activity of tumor-infiltrating lymphocytes (TILs). However, the activation signals required to promote TIL responses are less well characterized. Here we show that the antitumor activity of CD8 and γδ TIL is supported by interactions between junctional adhesion molecule-like protein (JAML) on T cells and its ligand coxsackie and adenovirus receptor (CXADR) within tumor tissue. Loss of JAML through knockout in mice resulted in accelerated tumor growth that was associated with an impaired γδ TIL response and increased CD8 TIL dysfunction. In mouse tumor models, therapeutic treatment with an agonistic anti-JAML antibody inhibited tumor growth, improved γδ TIL activation, decreased markers of CD8 TIL dysfunction, and significantly improved response to anti-PD-1 checkpoint blockade. Thus, JAML represents a novel therapeutic target to enhance both CD8 and γδ TIL immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Imunoterapia/métodos , Melanoma Experimental/patologia , Animais , Linfócitos T CD8-Positivos/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Melanoma/genética , Melanoma/mortalidade , Melanoma/patologia , Melanoma Experimental/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/mortalidade , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia
13.
Adv Exp Med Biol ; 1288: 95-109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453733

RESUMO

Coxsackievirus and adenovirus receptor (CXADR) belongs to immunoglobulin superfamily of cell adhesion molecules. It expresses in most tissues, but displays unique and indispensable functions in some tissues such as heart and testis. CXADR is a multifunctional protein that can serve as a viral receptor, a junction structural protein and a signalling molecule. Thus, it exerts a wide range of functions such as facilitating leukocyte transmigration, regulating barrier function and cell adhesion, promoting EMT transition, and mediating spermatogenesis. This review aims to provide an overview and highlights some recent findings on CXADR in the field with emphasis on studies in the testis, upon which future studies can be designed to delineate the roles and regulation of CXADR in spermatogenesis.


Assuntos
Receptores Virais , Espermatogênese , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Humanos , Masculino , Receptores Virais/genética , Transdução de Sinais
14.
Sci Rep ; 11(1): 16088, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373477

RESUMO

Two-cycle cesium chloride (2 × CsCl) gradient ultracentrifugation is a conventional approach for purifying recombinant adenoviruses (rAds) for research purposes (gene therapy, vaccines, and oncolytic vectors). However, rAds containing the RGD-4C peptide in the HI loop of the fiber knob domain tend to aggregate during 2 × CsCl gradient ultracentrifugation resulting in a low infectious titer yield or even purification failure. An iodixanol-based purification method preventing aggregation of the RGD4C-modified rAds has been proposed. However, the reason explaining aggregation of the RGD4C-modified rAds during 2 × CsCl but not iodixanol gradient ultracentrifugation has not been revealed. In the present study, we showed that rAds with the RGD-4C peptide in the HI loop but not at the C-terminus of the fiber knob domain were prone to aggregate during 2 × CsCl but not iodixanol gradient ultracentrifugation. The cysteine residues with free thiol groups after the RGD motif within the inserted RGD-4C peptide were responsible for formation of the interparticle disulfide bonds under atmospheric oxygen and aggregation of Ad5-delta-24-RGD4C-based rAds during 2 × CsCl gradient ultracentrifugation, which could be prevented using iodixanol gradient ultracentrifugation, most likely due to antioxidant properties of iodixanol. A cysteine-to-glycine substitution of the cysteine residues with free thiol groups (RGD-2C2G) prevented aggregation during 2 × CsCl gradient purification but in coxsackie and adenovirus receptor (CAR)-low/negative cancer cell lines of human and rodent origin, this reduced cytolytic efficacy to the levels observed for a fiber non-modified control vector. However, both Ad5-delta-24-RGD4C and Ad5-delta-24-RGD2C2G were equally effective in the murine immunocompetent CT-2A glioma model due to a primary role of antitumor immune responses in the therapeutic efficacy of oncolytic virotherapy.


Assuntos
Adenoviridae/isolamento & purificação , Césio/química , Cloretos/química , Vetores Genéticos/genética , Células A549 , Infecções por Adenoviridae/terapia , Animais , Antioxidantes/química , Linhagem Celular , Linhagem Celular Tumoral , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Glioma/terapia , Glioma/virologia , Células HEK293 , Humanos , Camundongos , Oligopeptídeos/genética , Terapia Viral Oncolítica/métodos , Ratos , Ácidos Tri-Iodobenzoicos/química , Ultracentrifugação/métodos
15.
Sci Rep ; 11(1): 12432, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127684

RESUMO

Coxsackievirus B3 (CVB3), is commonly implicated in myocarditis, which can lead to dilated cardiomyopathy, in addition to causing acute pancreatitis and meningitis. Yet, no vaccines are currently available to prevent this infection. Here, we describe the derivation of a live attenuated vaccine virus, termed mutant (Mt) 10, encoding a single amino acid substitution H790A within the viral protein 1, that prevents CVB3 infection in mice and protects from both myocarditis and pancreatitis in challenge studies. We noted that animals vaccinated with Mt 10 developed virus-neutralizing antibodies, predominantly containing IgG2a and IgG2b, and to a lesser extent IgG3 and IgG1. Furthermore, by using major histocompatibility complex class II dextramers and tetramers, we demonstrated that Mt 10 induces antigen-specific T cell responses that preferentially produce interferon-γ. Finally, neither vaccine recipients nor those challenged with the wild-type virus revealed evidence of autoimmunity or cardiac injury as determined by T cell response to cardiac myosin and measurement of circulating cardiac troponin I levels, respectively. Together, our data suggest that Mt 10 is a vaccine candidate that prevents CVB3 infection through the induction of neutralizing antibodies and antigen-specific T cell responses, the two critical components needed for complete protection against virus infections in vaccine studies.


Assuntos
Infecções por Coxsackievirus/prevenção & controle , Enterovirus Humano B/imunologia , Miocardite/prevenção & controle , Pancreatite/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Sítios de Ligação/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Feminino , Humanos , Imunogenicidade da Vacina/genética , Masculino , Camundongos , Mutação , Miocardite/virologia , Pancreatite/virologia , Linfócitos T/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
16.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802680

RESUMO

Coxsackievirus and adenovirus receptor (CAR) is present in epithelial and vascular endothelial cell junctions. We have previously shown a hemorrhagic phenotype in germ-line CAR knock-out mouse embryos; we have also found that CAR interacts with ZO-1 and ß-catenin. However, the role of CAR in vascular endothelial junction permeability has not been proven. To understand the roles of CAR in the vascular endothelial junctions, we generated endothelium-specific CAR knockout (CAR-eKO) mice. In the absence of CAR, the endothelial cell layer showed an increase in transmembrane electrical resistance (TER, Ω) and coxsackievirus permeability. Evans blue dye and 70 kDa dextran-FITC were delivered by tail vein injection. We observed increased vascular permeability in the hearts of adult CAR-eKO mice compare with wild-type (WT) mice. There was a marked increase in monocyte and macrophage penetration into the peritoneal cavity caused by thioglycolate-induced peritonitis. We found that CAR ablation in endothelial cells was not significantly increased coxsackievirus B3 (CVB3) induced myocarditis in murine model. However, tissue virus titers were significantly higher in CAR-eKO mice compared with WT. Moreover, CVB3 was detected in the brain of CAR-eKO mice. Endothelial CAR deletion affects the expression of major endothelial junction proteins, such as cadherin and platelet endothelial cell adhesion molecule-1 (PECAM-1) in the cultured endothelial cells as well as liver vessel. We suggest that CAR expression is required for normal vascular permeability and endothelial tight junction homeostasis. Furthermore, CVB3 organ penetration and myocarditis severities were dependent on the endothelial CAR level.


Assuntos
Cardiomiopatias/patologia , Cardiomiopatias/virologia , Endotélio Vascular/patologia , Endotélio Vascular/virologia , Enterovirus/fisiologia , Índice de Gravidade de Doença , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Células Cultivadas , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Enterovirus Humano B , Deleção de Genes , Inflamação/patologia , Fígado/metabolismo , Camundongos Knockout , Miocardite/complicações , Miocardite/virologia , Cavidade Peritoneal/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Estabilidade Proteica , Replicação Viral
17.
J Virol ; 95(13): e0004621, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33762416

RESUMO

Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.


Assuntos
Proteína ADAM17/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Adenoviridae/prevenção & controle , Moléculas de Adesão Celular/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/antagonistas & inibidores , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Guanilato Quinases/metabolismo , Células 3T3 , Adenoviridae/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Domínios Proteicos
18.
J Control Release ; 332: 285-300, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33626335

RESUMO

Adenovirus (Ad) is emerging as a promising modality for cancer gene therapy due to its ability to induce high level of therapeutic transgene expression with no risk of insertional mutagenesis, ability to be facilely produced at a high titer, and capacity to induce robust antitumor immune response. Despite these excellent attributes of human serotype 5 Ad, poor systemic administration capability, coxsackie and adenovirus receptor (CAR)-dependent endocytic mechanism limiting potentially targetable cell types, nonspecific shedding to normal organs, and poor viral persistence in tumor tissues are major hindrances toward maximizing the therapeutic benefit of Ad in clinical setting. To address the abovementioned shortcomings, various non-immunogenic nanomaterials have been explored to modify Ad surface via physical or chemical interactions. In this review, we summarize the recent developments of different types of nanomaterials that had been utilized for modification of Ad and how tumor-targeted local and system delivery can be achieved with these nanocomplexes. Finally, we conclude by highlighting the key features of various nanomaterials-coated Ads and their prospects to optimize the delivery of virus.


Assuntos
Nanoestruturas , Neoplasias , Adenoviridae/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Vetores Genéticos , Humanos , Neoplasias/terapia
19.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513663

RESUMO

The association of members of the enterovirus family with pregnancy complications up to miscarriages is under discussion. Here, infection of two different human induced pluripotent stem cell (iPSC) lines and iPSC-derived primary germ-layer cells with coxsackievirus B3 (CVB3) was characterized as an in vitro cell culture model for very early human development. Transcriptomic analysis of iPSC lines infected with recombinant CVB3 expressing enhanced green fluorescent protein (EGFP) revealed a reduction in the expression of pluripotency genes besides an enhancement of genes involved in RNA metabolism. The initial distribution of CVB3-EGFP-positive cells within iPSC colonies correlated with the distribution of its receptor coxsackie- and adenovirus receptor (CAR). Application of anti-CAR blocking antibodies supported the requirement of CAR, but not of the co-receptor decay-accelerating factor (DAF) for infection of iPSC lines. Among iPSC-derived germ-layer cells, mesodermal cells were especially vulnerable to CVB3-EGFP infection. Our data implicate further consideration of members of the enterovirus family in the screening program of human pregnancies. Furthermore, iPSCs with their differentiation capacity into cell populations of relevant viral target organs could offer a reliable screening approach for therapeutic intervention and for assessment of organ-specific enterovirus virulence.


Assuntos
Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Camadas Germinativas/metabolismo , Camadas Germinativas/virologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Infecções por Coxsackievirus/genética , Ectoderma/metabolismo , Endoderma/metabolismo , Enterovirus Humano B/metabolismo , Enterovirus Humano B/patogenicidade , Perfilação da Expressão Gênica , Camadas Germinativas/citologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Mesoderma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA/genética , RNA/metabolismo
20.
Life Sci ; 265: 118832, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33259866

RESUMO

AIMS: Inflammatory macrophages have been proposed as a therapeutic target for joint disorders caused by inflammation. This study aimed to investigate the expression and regulation of coxsackievirus-adenovirus receptor (CAR) in lipopolysaccharide (LPS)-stimulated inflammatory macrophages whereby to evaluate the feasibility of virus-directed enzyme prodrug therapy (VDEPT). MAIN METHODS: Macrophage cell lines (RAW264.7 and J774A.1) and primary macrophage cells derived from rat spleen were used to evaluate the expression of CAR protein or CAR mRNA. Specific inhibitors for TLR4 pathway were used to investigate the regulation of CAR expression. CAR expression in rat joints was documented by immunohistochemistry. Conditionally replicating adenovirus, CRAd-EGFP(PS1217L) or CRAd-NTR(PS1217H6), and non-replicating adenovirus CTL102 were used to transduce genes for enhanced green fluorescent protein (EGFP) or nitroreductase (NTR), respectively. The expression of EGFP, NTR, and the toxicity induced by CB1954 activation were evaluated. KEY FINDINGS: The in vitro experiments revealed that CAR upregulation was mediated through the TLR4/TRIF/IRF3 pathway in LPS-stimulated inflammatory macrophage RAW264.7 and J774A.1 cells. The inflammatory RAW264.7 cells upregulated CAR expression following LPS stimulation, leading to higher infectability, increased NTR expression, and enhanced sensitization to CB1954. In animal experiments, the induction of CAR expression was observed in the CD68-expressing primary macrophages and in the CD68-expressing macrophages within joints following LPS stimulation. SIGNIFICANCE: In conclusion, we report an enhanced CAR expression in inflammatory macrophages in vitro and in vivo through the immune response elicited by LPS. Thus, the TLR4/TRIF/IRF3 pathway of macrophages, when activated, could facilitate the therapeutic application of adenovirus-mediated VDEPT.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Imunidade Inata/imunologia , Inflamação/patologia , Macrófagos/patologia , Adenoviridae/genética , Animais , Linhagem Celular , Vetores Genéticos/administração & dosagem , Inflamação/genética , Inflamação/imunologia , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos , Macrófagos/imunologia , Masculino , Camundongos , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...